20 de junio de 2014

Evolución de la materia y de la vida - 3 -




Asociación de células para formar organismos pluricelulares:
 
            Las bacterias han intentado este salto evolutivo en varios momentos de su evolución pero solo han conseguido el estado colonial: Se forman colonias de bacterias, más o menos laxas, que adoptan diversas formas, unidas por sus cápsulas bacterianas, que forman una especie de cemento mucilaginoso.
            Parece ser que el verdadero estado pluricelular, en donde las células se especializan y se divide el trabajo, es una propiedad que solo pueden alcanzar las células eucariotas, aunque no todas lo hacen. Atendiendo a la forma de contactar y relacionarse las células entre sí en un organismo pluricelular se han establecido dos tipos de relaciones:
           
            Un tipo es el de los organismos vegetales y fúngicos. Las células están protegidas por membranas de secreción (paredes) de celulosa en los vegetales y de quitina en los hongos y a pesar de esto, se asocian, estableciendo puentes intercelulares (plasmodesmos) entre sí. Estas paredes no permiten una gran diferenciación y especialización celular y por lo tanto no se forman tejidos muy especializados como ocurre en los animales. Solamente en los vegetales terrestres como las plantas se alcanzan verdaderos tejidos, aunque no llegan al grado de complejidad de los animales, y esto se debe a necesidades de adaptación al medio terrestre (tejidos protectores, de sostén, conductores y reproductores). El hecho de que en ciertas algas y hongos no muy evolucionados exista una organización pluricelular cenocítica, (una célula divide su núcleo varias veces pero no se establecen tabiques citoplasmáticos y por lo tanto aparecen inmensas células plurinucleadas sin claras membranas de separación intercelular), hace pensar que esta podría ser una solución para permitir la comunicación intercelular en células que secretan sólidas paredes celulares. Sin embargo esta estrategia no ha prosperado en algas y hongos complejos y mucho menos en las plantas terrestres.
            Otra solución ha sido la adoptada por los animales. Las células no segregan paredes celulares sino como mucho membranas de secreción blandas hechas de glúcidos y proteínas mezclados (glucocálix) que permiten una mas estrecha comunicación entre sí y por lo tanto una mejor colaboración. Esto quizá haya permitido una mayor diferenciación y especialización celular, que ya se nota al comparar los invertebrados acuáticos con las algas y mucho más en los animales terrestres en donde las dificultades de adaptación al medio terrestre han estimulado la mayor especialización, si cabe, de tejidos animales. Esta relación intercelular más estrecha, quizá sea la causante de una mayor capacidad de movimiento de los animales respecto a los vegetales y hongos.
           
            ¿Cómo se produce  un organismo pluricelular a partir de una célula? La respuesta es sencilla: Las células hijas procedentes de una célula madre que se ha dividido, no se separan, sino que permanecen unidas y así sucesivamente hasta que se forma un organismo pluricelular más o menos complejo.
            La clave que ha permitido el estado pluricelular en las células eucariotas hay que buscarla en la mayor capacidad que tienen estas células de almacenar información genética. A diferencia del limitado cromosoma bacteriano, las células animales, vegetales y fúngicas dispones de numerosas fibras de cromatina (cromosomas) lineales que pueden almacenar muchos mas genes, entre otros los que llevan la información de las asociaciones celulares y de la diferenciación y especialización celular para formar tejidos, por ejemplo los genes rectores, reguladores u homeóticos, que permiten un correcto desarrollo embrionario en los animales.
           
            ¿Cómo se adaptan los seres pluricelulares a los cambios y agresiones ambientales? La existencia de muchas células formando un organismo en lugar de una sola célula, complica la situación. Ahora hay que distinguir entre mutaciones o cambios que afectan al organismo como individuo y mutaciones que afectan al organismo como especie. Las primeras corresponden a las células somáticas; por ejemplo los melanomas de piel producidos por un exceso de radiación solar. Estas y otras mutaciones, en principio, no tienen por que transmitirse a la descendencia, salvo que por un mecanismo desconocido afecten a los gametos del individuo que las sufre en los seres con reproducción sexual o bien actúen sobre células originarias de nuevos seres por reproducción asexual. Las segundas afectan a las células germinales o gametos del organismo. Entonces si se pueden transmitir a los descendientes. Como los gametos suelen estar suficientemente protegidos, debido a su importancia vital, es más difícil que los organismos sexuales, que son mayoría, sufran cambios evolutivos en condiciones ambientales normales. Es en los grandes cambios ambientales cuando se acelera la evolución, aunque la naturaleza se cobra muchas víctimas, produciéndose extinciones y masacres; solamente superan las crisis ambientales los organismos que presentan las mutaciones adecuadas a los cambios del ambiente. Cabe la posibilidad que la mutación afecte a los embriones, concretamente a genes homeóticos que van a determinar el destino y la organización del embrión que está  en desarrollo. En estos casos si se pueden producir cambios bruscos en los descendientes, muchos letales, pero algunos viables y con valor adaptativo.
           
            ¿Cuáles son estos cambios ambientales que aceleran los procesos evolutivos de los organismos pluricelulares? Los cambios climáticos como las glaciaciones, sequías, desertizaciones, etc.; los cambios geológicos como las orogenias, erupciones volcánicas, inundaciones marinas, movimientos continentales, etc.; los cambios magnéticos como las inversiones magnéticas, durante las cuales se debilita el escudo magnético que protege a la Tierra y los rayos cósmicos agreden con más intensidad y crudeza a los seres vivos; las catástrofes astronómicas como el impacto de asteroides y cometas sobre la Tierra (recuérdese el impacto del asteroide sobre la península de Yucatán hace 65 m.a. que acabó con los dinosaurios); el impacto de la acción humana sobre el medio ambiente que puede llevar a la propia autodestrucción de nuestra especie;
           
            Es oportuno plantear ahora el dilema entre lamarkismo y darwinismo:
Samuel Butler (1835-1902) desafió la tesis darwiniana de la evolución. Para Butler, la vida es materia que elige. Hay que tener en cuenta la memorización filogenética, la conversión de los afanes conscientes de una o varias generaciónes en las actividades de las siguientes y por último, en la fisiología de las futuras generaciones.
"Aunque hasta ahora no tenemos idea de como los hábitos voluntarios de un organismo o incluso una especie pueden convertirse en la fisiología de una generación futura a través de la base material de la herencia, la sugerencia de Butler nos parece fascinante." (L.Margulis y D.Sagan)
Estas ideas de Butler representan una especie de neolamarckismo; una especie de herencia de los caracteres adquiridos a largo plazo... a lo largo de varias generaciones, siempre y cuando se persista en estas adquisiciones en una serie de generaciones por resultar ventajosas para la especie.  Si estas ideas son acertadas, los seres vivos son protagonistas de su propia evolución; este hecho se acentúa en la especie humana pues tiene una evolución cultural muy potente.
Recientemente se ha descubierto que los priones pueden ser fuente de "mutaciones extranucleicas" y como son muy susceptibles de cambiar por acción ambiental han podido contribuir en la evolución, reforzando el neolamarkismo.

Continuará ....


No hay comentarios: